9th STANDARD MID-TERM EXAMINATION

MATHEMATICS

Du	ration : 2hour 45minutes Maximum Marks	: 80
1.	$\sqrt{10} \times \sqrt{15}$ is equal to	3=8
	A) $6\sqrt{5}$ B) $5\sqrt{6}$ C) $6\sqrt{25}$ D) $6\sqrt{6}$	
2.	Every rational number is a number.	
	A) Real B) whole C) Natural D) Positive	
3.	The graph of the linear equation $x = y$ passes through	
	A) $(1, 2)$ B) $(2, 1)$ C) $(1, 1)$ D) $(-1, 1)$	
4.	If the sum and product of three numbers is 0 and 30 respectively, the sum of the cube those three numbers is	s of
	A) 90 B) 60 C) 30 D) 10	
5.	Ordinate of all points on x-axis is	
	A) -1 B) 0 C) 1 D) Any number	
6.	According to Euclid, boundaries of a surface are	
	A) Surfaces B) Curves C) lines D) Points	
7.	The angles of a triangle are in the ratio 2:4:3. The smallest angle is	
	A) 80° B) 60° C) 40° D) 20°	
8.	In $\triangle ABC$, if $AB = AC$ and $\angle A = 40^{\circ}$ then	
	A) $\angle A = \angle B = 40^{\circ} B$) $\angle B = \angle C = 70^{\circ} C$) $\angle C = \angle A = 40^{\circ} D$) $\angle B = \angle C = 80^{\circ}$	
9.	In which quadrant or on which axis the point $(0, -2)$ lie ?	
10.	How many solutions does a linear equation in two variables has ?	
11.	Find the zero of the polynomial $p(x) = 3x - 5$.	
12.	Define 'Parallel lines'.	
13.	Two angles whose sum is 90° are called angles.	
14.	In a triangle the sum of any two sides is than the third side.	
15.	Give the geometric representations of y = 3 as an equation (i) in one variable (ii) in two variables	
16.	Rationalise the denominator and simplify : $\frac{1}{2+\sqrt{3}}$ OR Simplify : $(3+\sqrt{2})^2$	
17.	Express the recurring decimal number $0.4\overline{37} = 0.4373737$ in the form of a fraction.	
18.	Classify the following as linear, quadratic and cubic polynomials :	
	(i) $x^2 + x$ (ii) $x - x^3$ (iii) $y + y^2 + 4$ (iv) $1 + x$.	
19.	In the figure if $AC = BD$, then prove that $AB = CD$.	
20.	Find two solutions for the equation : $4x + 3y = 12$	
21.	Classify into rational and irrational numbers : 0.25 , $\sqrt{3}$, 0.8888 , 0.2020020002	

A

- 22. Find the product of any one, using suitable identity : (i) 94×95 OR
- 23. Write any two axioms of Euclid.
- 24. In the figure AB $\|$ CD and \angle BQP = 65⁰ Find all the remaining angles in the figure.
- 25. Draw figures showing (i) $\angle ABC = 100^{\circ}$ and (ii) Linear pairs of angles
- 26. In the figure, $\angle ABQ = 110^{\circ}$ and $\angle ACR = 130^{\circ}$ Find all the angles of $\triangle ABC$.
- 27. Factorise $x^2 x 12$ by splitting the middle term.
- 28. In $\triangle ABC$, AB = AC, $BD \perp AC$ and $CF \perp AB$. Prove that $\triangle ABD \cong \triangle ACF$.
- 29. Locate $\sqrt{3}$ on the number line.
- 30. In the figure, PR > PQ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$. Q
- 31. Find six different irrational numbers between $\frac{1}{7}$ and $\frac{2}{7}$. OR

Find six different rational numbers between 1 and 2.

- 32. Simplify : (i) $(32)^{\frac{2}{5}}$ (ii) $\frac{3^{10}}{3^7}$ (iii) $2^4 \times 2^5$
- 33. Expand using suitable identity : $(2x + 3y + 4z)^2$ OR Evaluate using suitable identity : $(104)^3$

34. If x + y + z = 0, show that $x^3 + y^3 + z^3 = 3xyz$.

35. Prove that 'If a transversal intersects two parallel lines, then each pair of alternate interior angles is equal'

OR

Prove that 'If two lines intersect each other, then the vertically opposite angles are equal'

- 36. When two line segments AB and CD bisect each other at O, Show that
 - (i) $\triangle AOD \cong \triangle BOC$ and (ii) $AD \parallel BC$. OR

Prove that 'Angles opposite to equal sides of an isosceles triangle are equal'.

- 37. Visualise 4.2675 on the number line, using successive magnification.
- 38. By using remainder theorem find the remainder when $p(x) = (x^3 5x^2 9x + 10)$ is divided by g(x) = (x 1) and verify the answer by actual division.

OR

Factorise the following using appropriate identities : (i) $9x^2 + 6xy + y^2$ (ii) $4y^2 - 9$

- 39. Draw the graph of the linear equation : 2x + y = 5
- 40. Prove that 'The sum of the angles of a triangle is 180°.'

(ii) 98^2

3×6=18

 $4 \times 4 = 16$

