Total time:3hrs Adarsha vidyalay hunashyal P.B M.M=80

$$
\text { SECTION-A } \quad 10 \times 1=10
$$

1) Name the point in a triangle that touches all sides of given triangle. Write its symbol of representation.
2) Where is Orthocenter of a right angled triangle ($\square A B C$) right angled at B located?
3) In above figure ABCD is a cyclic quadrilateral. If $\angle B C D=100^{\circ}$ and $\angle A B D=70^{\circ}$, find $\angle A D B$.

4) Prove that angle subtended by semicircle is 90°.
5) If $\overline{B E}$ and $\overline{B F}$ are \perp to $A D$ and $C D$ respectively. Then find $A D$ if $A B=10 \mathrm{~cm}, B E$ is 4 cm and BF is 5 cm .

6) Prove that area of triangle is half area of parallelogram if between two parallel lines and having common base.
7) Find area of a triangle with sides $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$ using heron's formula.
8) Name the type of triangle where orthocenter, in-center, and circumcenter are collinear.
9) Prove that opposite sides of parallelogram are equal.
10) How many solutions are possible when two lines are parallel?

> Section B (2 mark)
11) Derive $A B C$ is a triangle in which D is midpoint of $B C$ and E is the midpoint of $A D$.

Prove that area of $\square B E D=\frac{1}{4}$ area of $\square A B C$.

12) If a triangle and a parallelogram are on the same base and between the same parallels, then prove that the area of the triangle is equal to half the area of the parallelogram.

Or
Show that a median of a triangle divides it into two triangles of equal area.
13) Prove that the opposite angles of cyclic Quadrilateral are supplement of each other.
14) Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at O. Prove that ar $(A O D)=\operatorname{ar}(B O C)$.
D and E are points on sides $A B$ and $A C$ respectively of triangle $A B C$ such that ar (DBC)
$=\operatorname{ar}(E B C)$. Prove that $D E \| B C$.
15) Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.

> Section C
16) In the bellow figure AB divides $\angle_{D A C}$ in the ratio of $1: 3$ and $A B=D B$. Determine the value of x.

17) In figure bellow m and n are two plane mirrors perpendicular to each other. Show that the incident ray CA is parallel to the reflected ray BD.

18) Prove that perimeter of the triangle is greater than the sum of its three medians.

Or Prove that Perimeter of the triangle is greater than the sum of the three altitudes.
19) If two circles intersect in two points, prove that the line joining the centres is the perpendicular bisector of the common chord.
20) Of any two chords of a circle show that the one which is larger, is nearer to the centre.

Or

Of any two chords of a circle show that the one which is nearer to the centre, is larger.
21) If $D, E \& F$ are midpoints of sides $B C, C A, A B$ respectively then prove that $B D E F$ is a parallelogram.

Or
O is the centre of the circle of the circle of radius $5 \mathrm{~cm}, \mathrm{OP} \perp \mathrm{CD}, \mathrm{AB} \| \mathrm{CD}, \mathrm{AB}=6 \mathrm{~cm}$, $C D=8 \mathrm{~cm}$ and chords on opposite side. Determine PQ.
22) Prove that:
a) Equal chord subtend equal angle at centre.
b) Equal chords are equidistant from centre.
23) In triangle $A B C, D$ is the mid-point of $A B$.Pis any point of $B C . C Q \| P D$ meets $A B$ in Q. Show that $\square M B C \cong \triangle A B D$.

Section D (6 mark)

24) If E, F, G, H are respectively, the mid-points of sides $A B, B C, C D$ and $D A$ of parallelogram $A B C D$. Show that the quadrilateral EFGH is
a) a parallelogram
b) its area is half area of $\| A B C D$.
25) $A B C D$ is a parallelogram and O is any point in its interior. Prove that:
a) $\operatorname{ar}(\square A O B)+\operatorname{ar}(\square C O D)=\operatorname{ar}(\square B O C)+\operatorname{ar}(\square A O D)$
b) $\operatorname{ar}(\square A D F)=\operatorname{ar}(\square D C E)$
Or

In Fig. 9.34, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides $B C, C A$ and $A B$ respectively. Line segment $A X$. $D E$ meets $B C$ at Y . Show that:
a) $\operatorname{ar}(\mathrm{CYXE})=2 \mathrm{ar}(\mathrm{FCB})$
b) $\triangle M B C \cong \triangle A B D$
c) $\operatorname{ar}(\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})$

26) Bisectors of angle A, B and C of a triangle $A B C$ intersect its circumcircle at D, E and F respectively. Prove that angles of triangle DEF are $90^{\circ}-\frac{A}{2}, 90^{\circ}-\frac{B}{2}$ and $90^{\circ}-\frac{C}{2}$.
27) Prove that:
a) If trapezium has two non-parallel sides equal then it is cyclic.
b) For two triangles having same base, their areas are proportional to their heights drawn from the vertex opposite to the common base.()
c) Area of equilateral triangle is $\frac{\sqrt{3}}{4} a^{2}$ when length of one side is ' a '.

Or
a) $A B C D$ is a parallelogram. E and F are midpoints of sides $A B$ and $C D$ respectively. AF and DE intersect at $\mathrm{P} ; \mathrm{BF}$ and $C E$ intersect at Q .

Prove that
i) AECF is a parallelogram.
ii) PEQF is a parallelogram.

b) Prove parallelogram has opposite sides and angles equal.
28.In Fig bellow, $\mathrm{BC}|\mid \mathrm{XY}, \mathrm{BX||CA}$ and
$\mathrm{AB} \| \mathrm{YC}$. Prove that: $\operatorname{ar}(\square A B X)=\operatorname{ar}(\square A C Y)$.
29. In parallelogram $A B C D, E$ and F are two points on side $A B$ and $B C$ respectively.

Show that $\operatorname{ar}(\square A D F)=\operatorname{ar}(\square D C E)$.

