ADARSHA VIDYALAYA HUNASHYAL P.B

SUBJECT : MATHEMATICS

MATHEMATICS FA - 1

SL.N O	CONTENTS	TOPIC	FA
1	PLYING WITH-NUMBERS	ARITHMETIC	FA-1
2	SQUARE ,SQUARE ROOTS CUBES AND CUBE ROOTS	ARITHMETIC	FA-1
3	RATIONAL NUMBERS	ARITHMETIC	FA-2
4	COMMERCIAL ARITHMETIC	ARITHMETIC	FA-3
5	STATISTICS	ARITHMETIC	$F A-4$
6	ALGEBRAIC EXPRESSIONS	ALGEBRA	FA-1
7	FACTORIZATION	ALGEBRA	$F A-2$
8	EXPONENTS	ALGEBRA	$F A-2$
9	LINEAR EQUATION IN ONE VARIABLE	ALGEBRA	$F A-3$
10	INTRODUCTION TO GRAPHS	ALGEBRA	$F A-4$
11	AXIOMS POSTULATES THEOREMS	GEOMETRY	$F A-1$
12	THEOREMS ON TRIANGLES	GEOMETRY	$F A-2$
13	CONGRUENCY OF TRIANGLES	GEOMETRY	$F A-3$
14	CONSTRUCTION OF TRIANGLES	GEOMETRY	$F A-3$
15	QUADRILATERALS	GEOMETRY	$F A-4$
16	MENSURATION	GEOMETRY	$F A-4$

ADARSHA VIDHYALAYA HUNASHYAL P.B

FA - 1 [UNIT - 1 PLAYING WITH NUMBERS
REVISION

1. Write 54 and 254 in generalized form

Ans: $54=(5 \times 10)+(4 \times 1) 254=(2 \times 100)+(5 \mathrm{x} 10)+(4 \mathrm{x} 1)$
2 . Find the digit represented by ' p ' in the following addition.
Solution:

411
$+\quad Q 115$
5226

> You see that P, being a digit, cannot exceed 9. The only way you can arrive to 6 from 5 is adding 1 . Hence $P=1$. Similarly, you get $Q=1$. You may check that $411+115=526$.
3. Write the remainder and quotientwhen 85 is divided by 15

Ans:- here quotient is $\mathbf{5}$ and remainder is $\mathbf{1 0}$
15) $85(5$
4.Write the quotient and remainder in the following when each of the following is divided by 13.

75

41, 49, 85,
5. is 444445 divisible by 3

Solution : The sume of the digits is $4+4+4+4+4+5=25$. which is not divisible by 3 .

6. Check whether 12456 is divisible by 4

Solution : Here, the number formed by the last two digits is 56 . This is divisible by 4
7. An integer a is divisible by 5 if and only if it ends with 0 or 5

Example : 125, 145, 165, 175 etc.,
8. Using numbers from 1 to 9 construct a 3×3 magic square. What is the magic sum here.

NOTE:
Given any two integers a and $b>0$, there exist unique integers q and r such that $a=b q+r$, where $0 \leq r<b$.
A number is divisible by 4 if and only if the number formed by the last two digits is divisible by 4 .

2	7	6
9	5	1
4	3	8

A number is divisible by 3 or 9 if and only if the sum of the digits is divisible by 3 or 9 respectively.
A number is divisible by 5 if and only if it ends in 0 or 5.

ADARSHA VIDHYALAYA HUNASHYAL P.B

FA-1 [UNIT - 1] PLAYING WITH NUMBERS
Marks: 10
1. Write 54 and 254 in generalized form
NAME:
-- 2 X 5

\qquad
\qquad
2. Find the digit represented by ' p ' in the following addition.

3.Write the remainder and quotient
when 85 and 105is divided by 15
\qquad
\qquad
\qquad
4. Check whether 12456 and 3456 is divisible by 4
\qquad
\qquad
\qquad
5. Using the numbers from 3 to11 construct a 3×3 magic square .

What is the magic sum here.
\qquad
\qquad

FA-1 Unit :-2 Topic : ALGEBRAIC EXPRESSION

REVISION FOR STUDENTS

TRUE OR FALSE

SL.NO	STATEMENT	ANS	Example	TRUE/FALSE
1	An algebraic expression in which each term contains only the variable[s] with non negative exponent[s] is called	polynomial	$x^{2}-4 \mathrm{x}$ $\mathrm{x}-4 \mathrm{xy}+\mathrm{y}$,	TRUE
2	A polynomial which contains only one term is called a	Monomial.	$6 \mathrm{x}, 8 \mathrm{xy}, 7 \mathrm{x}^{2} \mathrm{y}$, $5 \mathrm{x}^{2} \mathrm{yz}$	TRUE
3	A polynomial which contains two terms is called a	Binomial	$7+\mathrm{x}, 5 \mathrm{xy}-3 \mathrm{x}$ $3 \mathrm{x}^{2}-6 \mathrm{xy}$	TRUE
4	A polynomial which contains three terms is called a	Trinomial.	$\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}$ $\mathrm{x}^{2}+8 \mathrm{x}+12$	TRUE
5				

II. Add $7 x^{2}-4 x+5$ and $9 x-10$ Here there are unlike terms. We can add only like terms. We write like terms one below the other to facilitate easy addition.

Example 3. Add $8 x y+4 y z-7 z x, 6 y z+11 z x-6 y$ and $-5 x z+6 x-2 y x$.
Solution: Here the again there are many unlike terms. We write like terms one below the other to facilitate easy addition. We are also using

$$
7 x^{2}-4 x+5
$$ the commutative property: $x y=y x$ and $x z=z x$.

8 xy	+4 yz	-7 zx		
	+6 yz	$+11 x$.	$-6 y$	
-2 xy		-5 zx	+6 x	
$+6 x y$	+10 yz	$-x y$	+6 x	$-6 y$

Multiplication of Polynomials

Observe the following products: (i) $5 x \times 6 x^{2}=(5 \times 6) \times\left(x \times x^{2}\right)=30 x^{3}$;
(ii) $2 x \times 6 y \times 8 z=(2 x \times 6 y) \times(8 z)$

$$
\begin{aligned}
=((2 \times 6) \times(x \times y)) \times(8 z) & =(12 x y) \times(8 z) \\
& =(12 \times 8) \times(x y \times z)=96 x y z
\end{aligned}
$$

1. Find the product of : [a] $4 \mathrm{x} \times 5 \mathrm{y} \times 7 \mathrm{z}=20 \mathrm{xy} \times 7 \mathrm{z}=140 \mathrm{xyz} \quad[b] 2 I^{2} \mathrm{~m} \times 31 \mathrm{~m}^{2}=61^{3} \mathrm{~m}^{3}$.
2. Deternine the product $(8 y+3) x 4 x: \quad$ Solution:

$$
\begin{aligned}
(8 y+3) \times(4 x) & =(4 x) \times(8 y+3) \\
& =(4 x \times 8 y)+(4 x) \times 3 \\
& =32 x y+12 x
\end{aligned}
$$

13. Complete the following table of products of two monomials.

First second	$3 x$	$-6 y$	$4 x^{2}$	$-8 x y$	$9 x^{2} y$	$-11 x^{3} y^{2}$	$15 x$
$3 x$	$9 x^{2}$	$-18 x y$	$12 x 2$	$-24 x^{2} y$	$27 x 3 y$	$-33 x^{4} y^{2}$	$-45 x^{2}$
$-6 y$							
$4 x^{2}$							
$-8 x y$							
$9 x^{2} y$							
$-11 x^{3} y^{2}$							
$-12 x$							

4. simplify: $(x+a)(x+b)=x(x+b)+a(x+b)=x^{2}+x b+a x+a b$

$$
\begin{gathered}
=x^{2}+a x+b x+a b \\
=x^{2}+(a+b) x+a b
\end{gathered}
$$

5. Find the product of $(x+5)(x+7)=x^{2}+(5+7) x+(5 x 7)$

$$
=x^{2}+12 x+35
$$

6. Find the product of 103×98 using suitable identity

$$
\begin{aligned}
103 \times 98 & =(100+3)(100-2) \\
& =(100)^{2}+[(3+(-2)] 100+(3 \times(-2) \\
& =10000+[(1 \times 100)]+(-6) \\
& =10000+94=10094
\end{aligned}
$$

7. Expand : $\quad(a+b)^{2}=$
8. $a^{2}-b^{2}=(a+b)(a-b)$
9. $(a-b)^{2}=$

10. Find $(3 x+4 y)^{2}=$

Solution: we use identity : $(a+b)^{2}=\left(a^{2}+2 a b+b^{2}\right)$.
Taking $a=3 x$ and $b=4 y$, we get
$(3 x+4 y)^{2}=(3 x)^{2}+2(3 x)(4 y)+(4 y)^{2}$

$$
=9 x^{2}+24 x y+16 y^{2}
$$

11. Find $(2 p-4 q)^{2}=$

Solution: we use identity : $(a-b)^{2}=\left(a^{2}-2 a b+b^{2}\right)$.
Taking $a=2 p$ and $b=4 q$, we get
$(2 p-4 q)^{2}=(2 p)^{2}-2(2 p)(4 q)+(4 q)^{2}$

$$
=4 p^{2}-16 p q+16 q^{2}
$$

12.Compute : 54×46

Solution: Here; again identities is used $(a+b)(a-b)=a^{2}-b^{2}$.
Taking $a=50$ and $b=4$
$54 \times 46=(50+4)(50-4)$
$=(50)^{2}-(4)^{2}$.
$=2500-16=2484$

$$
\begin{gathered}
a(a+b)+b(a+b) \\
=a^{2}+a b+a b+b^{2} \\
=a^{2}+2 a b+b^{2}
\end{gathered}
$$

$$
a(a-b)-b(a-b)
$$

$$
=a^{2}-a b-a b+b^{2}
$$

$$
=a^{2}-2 a b+b^{2}
$$

1. TRUE OR FALSE

SL.NO	STATEMENT	ANS	Example	TRUE/FALSE
$\mathbf{1}$	An algebraic expression in which each term contains only the variable[s] with non negative exponent[s] is called	Binomial	$x^{2}-4 \mathrm{x}$ $\mathrm{x}-4 \mathrm{xy}+\mathrm{y}$,	
2	A polynomial which contains only one term is called a	Monomial.	$6 \mathrm{x}, 8 \mathrm{xy}, 7 \mathrm{x}^{2} \mathrm{y}$, $5 \mathrm{x}^{2} \mathrm{yz}$	
3	A polynomial which contains two terms is called a	polynomial	$7+\mathrm{x}, 5 \mathrm{xy}-3 \mathrm{x}$ $3 \mathrm{x}^{2}-6 \mathrm{xy}$	
4	A polynomial which contains three terms is called a	Trinomial.	$\mathrm{ax} \mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}$ $\mathrm{x}^{2}+8 \mathrm{x}+12$	

2. Expand the following using suitable identities:
3. $(x+a)(x+b)=x^{2}+(a+b) x+a b \quad[2](a+b)^{2}=\left(a^{2}+2 a b+b^{2}\right) .[3](a-b)^{2}=\left(a^{2}-2 a b+b^{2}\right)$.
4. $(a+b)(a-b)=a^{2}-b^{2}$.
[a] 103×98 [b] $(3 x+4 y)^{2}$ [c] $(2 p-4 q)^{2}$ [d] 54×46
\square
\square
\square
\square \square

FA-1 class : 8 Unit :- 3
Topic : AXIOMS POSTULATES THEOREMS
REVISION FOR STUDENTS.

SL.NO	STATEMENT		
1	Things which are equal to the same things are equal to one another	AXIOM - 1	TRUE
2	If equals are added to equals, the wholes are equal.	AXIOM - 2	TRUE
3	If equals are subtracted from equals, then the remainders are equal.	AXIOM - 3	TRUE
4	Things which coincide with one another must be equal to one another.	AXIOM - 4	TRUE
5	The whole is greater than the part.	AXIOM - 5	TRUE
6	A straight line segment can be drawn joining any two points.	Postulate - 1	TRUE
7	Any straight line segment can be extended indefinitely in a straight line.	Postulate - 2	TRUE
8	Given any straight line segment, a circle can be drawn having the segment as radius and one end point as center	Postulate - 3	TRUE
9	All right angles are congruent.	Postulate - 4	TRUE
10	If a straight line meets two other lines, so as to make the two interior angles on one side of it together less than two right angles, the other straight lines will meet if produced on that side on which the angles are less than two right angles.	Postulate - 5	TRUE

II. Name the following:

12. Find the value of ' x ' in the given diagram:
$\left\llcorner A O C+\left\llcorner C O B=180^{\circ}\right.\right.$
$2 x+x=180^{\circ}$
$3 x=180^{\circ}=\rightarrow x^{\circ}=\frac{180^{\circ}}{3}=60^{\circ}$ so $\left\llcorner A O C=2 x=2 \times 60^{\circ}=120^{\circ}\right.$.

13. Find all angles in the given figure.

Here $\llcorner 1$ and $\llcorner 3$ are vertically angles
Here $\left\llcorner 4\right.$ and $\left\llcorner 2\right.$ are vertically angles= 135°
Here $\left\llcorner 5\right.$ and $\left\llcorner 7\right.$ are vertically angles $=45^{\circ}$
Here $\left\llcorner 8\right.$ and $\left\llcorner 6\right.$ are vertically angles $=135^{\circ}$
Here $\llcorner 4$ and $\llcorner 1$ are adjacent angles
Here $\llcorner 3$ and $\llcorner 2$ are adjacent angles

Here $\llcorner 8$ and $\llcorner 5$ are adjacent angles
Here $\left\llcorner 7\right.$ and $\left\llcorner 6\right.$ are adjacent angles= $180^{\circ}-135^{\circ}=45^{\circ}$
Here $\llcorner 1$ and $\llcorner 5$ are corresponding angles
Here $\llcorner 3$ and $\llcorner 5$ are alternate angles
Here $\llcorner 2$ and $\llcorner 8$ are corresponding angles
similarly we can write [for more information page no 44 theorem - 1] $\llcorner 2=\llcorner 6,\llcorner 4=\llcorner 8,\llcorner 3=\llcorner 7,\llcorner 1=\llcorner 7,\llcorner 4=\llcorner 6$,

Reflex angle: an angle which measures more than 180 but less than 360°

Find ' x ' \quad What type of angles
14.Define Playfair's postulate : Given a line in a plane and a point outside the line in the same plane, there is a unique line passing through the given point and parallel to the given line.
15.Proposition 5: If a transversal cuts two parallel lines, then the sum of two interior angles on the same side of the transversal is equal to 180°
16.Proposition 6 : If a transversal cuts two distinct straight lines in such a way that the sum of two interior
angles on the same side of the tr ansversal is equal to 180°, then the two lines are parallel to each other.
Linear pair: a pair of angles which make a starlight line.
Vertically opposite angles: when two straight lines intersect each
other, a pair of angles which do not form a linear pair are vertically
opposite angles.
Collinear: points all lying on the same straight line.
Parallel lines: A pair of lines which do not intersect in

FA-1 class : 8 Unit:- 3 Topic : AXIOMS POSTULATES THEOREMS Ma rks: 10I. Write True or False $1 / 2 X 10=5$

SL.NO	STATEMENT		ANS
1	Things which are equal to the same things are equal to one another	AXIOM - 4	
2	If equals are added to equals, the wholes are equal.	AXIOM - 2	
3	If equals are subtracted from equals, then the remainders are equal.	AXIOM - 3	
4	Things which coincide with one another must be equal to one another.	AXIOM -1	
5	The whole is greater than the part.	AXIOM -5	
6	A straight line segment can be drawn joining any two points.	Postulate -5	
7	Any straight line segment can be extended indefinitely in a straight line.	Postulate -3	
8	Given any straight line segment, a circle can be drawn having the segment as radius and one end point as center	Postulate - 2	
9	All right angles are congruent.	Postulate - 4	
10	If a straight line meets two other lines, so as to make the two interior angles on one side of it together less than two right angles, the other straight lines will meet if produced on that side on which the angles are less than two right angles.	Postulate - 1	

II. Name the following:
$11 / 2 \times 4=2$

| | | | |
| :--- | :--- | :--- | :--- | :--- |

II. In the given figure Name
$1 \times 3=$
3[a]Alternate angles
[b] Vertically Opposite angles
[c] Adjacent angles OR
. Find the value of ' x ' in the given diagram:

FA-1 class : 8 Unit :- 4 Topic : Square, Square roots, Cube cube roots REVISION I. Express the following statements mathematically(I) square of 4 is 16 (ii) square of 8 is 64 (iii) square of 15 is 225. Solution: $\quad 4_{2}=16.8_{2}=64.5_{2}=225.2$. Identify the perfect squares among the following numbers1,2,3,8,36,49,65,67,71,81,169,625,125,900,100,1000, 100000. Solution: 1, $36,49,81,169,625,900,100,3$. Make a list of all perfect squares from 1 to 500.

1	4	9	16	25	36	49	64
81	100	121	144	169	196	225	256
289	324	361	400	441	484	529	576
625	676	729	784	841	900	961	1024
1089	1156	1225	1296	1369	1444	1521	1600
1681	1764	1849	1936	2025	2116	2209	2304
2401	2500	2601	2704	2809	2916	3025	3136

4. Find the square root of the following numbers by factorization:
(i) 196 (ii) 256 (iii) 10404 (iv) 1156 (v) 13225.

2277	196	228	256	2 1156	
	98		128	2	578
	49		64	17	289
	7	8	8	17	17
	1		1		1
$2^{2} \times 7^{2}=2 \times 7=14$		$2^{2} \times 8^{2}=2 \times 8=16$		$2^{2} \times 17^{2}=$	$2 \times 17=34$

5.Simplify: [I] $\sqrt{100}+\sqrt{36}$ [ii] $\sqrt{1360+9}$ [iii] $\sqrt{2704}+\sqrt{144}+\sqrt{289}$ [iv] $\sqrt{225}-\sqrt{25}$
[v] $\sqrt{1764}-\sqrt{1444}$ [vi] $\sqrt{169}-\sqrt{361}$
Solution: [I] $10+6=16$ [ii] $=37$ [iii] $52+12+17=81[i v] 15-5=10[v] 42-38=4[v i] 13-19=-6$

ADARSHA VIDHYALAYA HUNASHYAL P.B

FA-1 class : 8 Unit :-4 Topic : Square \& Cube roots
I. Express the following statements mathematically (I) square of 4 is 16 (ii) square of 8 is 64 (iii) square of 15 is 225.(iv) square of 21 is 441
2. Find the square root of the following numbers by factorization: (i) 196 (ii) 256 (iii) 1156 (vi) 13225.
$1 \times 4=4$

\square
[v] $\sqrt{1764}-\sqrt{1444}$ [vi] $\sqrt{169}-\sqrt{361}$

